Generative models uncertainty estimation

نویسندگان

چکیده

In recent years fully-parametric fast simulation methods based on generative models have been proposed for a variety of high-energy physics detectors. By their nature, the quality data-driven degrades in regions phase space where data are sparse. Since machine-learning hard to analyse from physical principles, commonly used testing procedures performed way and can't be reliably such regions. our work we propose three estimate uncertainty inside outside training region, along with calibration techniques. A test LHCb RICH is also presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive estimation of generative video models

We present a generative model of video for which the learning procedure automatically clusters video frames into scenes and objects. The learning algorithm is based on a recursive hierarchical procedure which can be shown to converge and for which some guarantees on the local optimality of the resulting log-likelihood of the data can be given. In the previous work we presented generative model ...

متن کامل

Dual Generative Models for Human Pose Estimation

Given a image photographed somebody in action, we describe a dual-generative-model approach for estimating human body pose from silhouette. In contrast to existing techniques, which mostly learn regression model whereby make inference of body pose for unknown input [1, 2, 6, 7], we transform the problem into searching of the best pair of upper pose and lower pose. This searching strategy can re...

متن کامل

Facing uncertainty : 3D face tracking and learning with generative models

of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

متن کامل

Uncertainty Estimation in Reconstructed Deformable Models

One of the hallmarks of the Bayesian approach to modeling is the posterior probability, which summarizes all uncertainties regarding the analysis. Using a Markov Chain Monte Carlo (MCMC) technique, it is possible to generate a sequence of objects that represent random samples drawn from the posterior distribution. We demonstrate this technique for a reconstruction of a two-dimensional object fr...

متن کامل

Estimation and uncertainty of reversible Markov models.

Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2022

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2438/1/012088